New research highlighting the effectiveness of grazing muzzles as a tool to help with weight management has also shown that longer grass can be more difficult for muzzled ponies to graze, and can cause frustration-related behaviour in some individuals.

Grazing muzzles have already been shown to reduce the pasture intake of ponies by around 80% by significantly reducing bite size and intake.* Ponies fitted with grazing muzzles may spend more time engaging in foraging and eating than their non-muzzled counterparts, yet the majority either lose weight or retain their body condition. This in turn helps reduce susceptibility to obesity and related disorders, such as insulin dysregulation and laminitis.

The new research was conducted by the WALTHAM® Equine Studies Group in collaboration with Dr Annette Longland of Equine and Livestock Nutrition Services (ELNS) in Wales. Four mature ponies were selected for the study. Their dry matter (DM) and water-soluble carbohydrate (WSC) intakes were measured in spring, summer, and autumn pastures on four, three-hour occasions per pony per season when fitted with or without a grazing muzzle. In addition, ponies with and without muzzles were allowed to take 10 bites of swards maintained at different heights.

When wearing grazing muzzles, the ponies’ pasture intake was reduced by 77% during spring and summer and by 83% during the autumn. Without muzzles, the ponies generally reduced the sward length by half with the first bite but when muzzled the reduction was variable and the ponies appeared to experience greater difficulty in eating the longer versus the shorter swards.

The short (less than 10cm), upright, grass appeared to be the easiest to eat, as leaf blades and stems protruded through the holes in the muzzle. The medium and long swards proved more difficult. They bent under the pressure of the muzzle and became flattened, causing the ponies to adopt various strategies to access the grass.

In some cases, they pawed the ground to unearth the sward and access it through the muzzle. Alternatively, they rammed the solid base of the muzzle hard onto the grass, causing it to buckle and make some blades or stems accessible. These were then yanked vigorously often causing the entire plant to be uprooted and eaten.

Water soluble carbohydrate levels in the sward were similar across the seasons although they were slightly higher in autumn. However, once muzzled, the ponies’ intake of WSC wasn’t significantly different across the seasons; strengthening the evidence that the use of grazing muzzles is effective.

Clare Barfoot RNutr and the research and development manager at SPILLERS® said: “While the frustration displayed when the muzzled ponies were on longer grass swards indicates that care should be taken to provide an accessible grass length, grazing muzzles remain an effective weight management tool. They allow turnout over large areas, increasing exercise and allow slow “trickle” feeding, to control weight gain and reduce the risk of obesity-related disorders, without significantly compromising the natural behaviour and wellbeing.”

She points out that grazing muzzles must be used with care, and should be properly fitted.
Liver fluke (Fasciola hepatica) infection may influence equine health and welfare in Ireland, according to a recent report.

The parasite causes significant economic and welfare problems in cattle in Ireland. However, although it is known that horses can also become infected, there has been little work to assess the extent of the problem. Aoife Quigley and colleagues, from University College Dublin School of Veterinary Medicine, writing in the Equine Veterinary Journal, describe a recent abattoir survey in which they found that 9.5% of horses were infected with liver fluke.

However, they found little evidence that the infection had a clinical effect on infected animals. There was no statistical association between fluke infection and body condition score, breed, age, sex, or roundworm (strongyle) infection. Infected animals did not have significantly elevated liver enzyme (GGT and GLDH) concentrations or bile acid concentrations. Neither was an indirect ELISA test, based on the F. hepatica recombinant cathepsin L1 (CL1) antigen, particularly helpful in diagnosis. Although the test showed a high specificity (95.6%), it had a low sensitivity at 42.1% (that is, it failed to identify over half of the fluke infected animals.)

The authors conclude that “the 9.5% prevalence of liver fluke in the horse during the period of this study indicates that F. hepatica may be a relevant factor in equine health and welfare in Ireland.”

For more details, see:


Liver fluke in Ireland

Horses and ponies should be adapted gradually to wearing them. Group and individual behaviour should be monitored closely to observe any potential concerns caused by changes to the herd dynamics. It is important to ensure that muzzled ponies are confident in drinking and eating through their muzzles before turning them out for prolonged periods. Muzzles must not be used continuously (not more than 10 hours per day) and total exclusion muzzles are not advised. Regular weight monitoring is recommended as some individuals can still gain weight when muzzled.

For more details, see:

Effects of Grazing Muzzles on Intakes of Dry Matter and Water-Soluble Carbohydrates by Ponies Grazing Spring, Summer, and Autumn Swards, as well as Autumn Swards of Different Heights. AC Longland, P Harris, C Barfoot. Journal of Equine Veterinary Science (2016) 40, 26-33.

doi:10.1016/j.jevs.2015.09.009


doi:10.1016/j.jevs.2011.03.105

“Blood biomarkers are not good indicators of liver fluke infection and the CL1 ELISA is not a sensitive diagnostic tool for fluke infection in the horse. The prevalence of F. hepatica in horses indicates that further research is required to assess the potential impact of liver fluke on equine liver health.”

For more details, see:

Effects of Grazing Muzzles on Intakes of Dry Matter and Water-Soluble Carbohydrates by Ponies Grazing Spring, Summer, and Autumn Swards, as well as Autumn Swards of Different Heights. AC Longland, P Harris, C Barfoot. Journal of Equine Veterinary Science (2016) 40, 26-33.

doi:10.1016/j.jevs.2015.09.009


doi:10.1016/j.jevs.2011.03.105
Imiquimod for treating aural plaques

Imiquimod cream may be an effective treatment for aural plaques in horses, according to a recent report from São Paulo State University, Botucatu, Brazil.

Aural plaques are white thickened skin lesions on the inside of the earflap. They are associated with equine papillomaviruses (EcPV), and are likely spread by biting flies. Often they do not cause any problems, but sometimes they may be painful and affected horses may resent their ears being touched.

Imiquimod is a topical immune modulator that stimulates production of pro-inflammatory mediators, resulting in anti-viral activity. It is used in human medicine for treating genital warts, and has been suggested for treating some sarcoids and aural plaques in horses.

Luiza S. Zakia and colleagues in the School of Veterinary Medicine and Animal Science and the Biosciences Institute at São Paulo State University, conducted a study to evaluate 5% imiquimod for treating aural plaques. They also looked at the effect of treatment on their ability to detect papillomavirus DNA. A full report of the research is published in the journal, Veterinary Dermatology.

Eight horses with aural plaques (14 affected ears) were used in the study. Three mares with unilateral aural plaques served as untreated controls.

Eleven horses (seven in the treated group and the three control horses) had sensitive ears before treatment started. Most horses had to be sedated each time the ears were cleaned and treated. Two horses with individual punctate lesions did not require sedation, but those with extensive coalescing lesions did.

Before each imiquimod application, crusts were removed with gauze, either dry or soaked in sterile water. The researchers applied a thin layer of 5% imiquimod cream all over the inner surface of the ear – not just the lesions. The treatment was repeated at 48 hour intervals.

Treatment continued until the aural plaques had completely resolved. The ears were then inspected daily. If there was any sign of recurrence, treatment started again. Between eight and 30 (average 18) imiquimod applications were necessary for complete resolution of the aural plaques.

Biopsies were taken to detect papillomavirus DNA, before the start of treatment and 90 days after the lesions had resolved.

The researchers report clinical resolution in 93% of the treated ears. Imiquimod treatment promoted the clearance of EcPV in 71.4% of the treated ears.

They conclude that 5% imiquimod cream may be used as an effective treatment for aural plaques in horses.

For more details, see:
Imiquimod treatment for Equus caballus papillomavirus infection in equine aural plaques
Luiza S. Zakia, Giovane Olivo, Roberta M. Basso, Juliana Mira, Mariana Herman, Joao P. Araujo Jr, Alexandre S. Borges and José P. Oliveira-Filho.
Vet Dermatol 2016; 27: 175–e44
DOI: 10.1111/vde.12305
Not all maple species contain Hypoglycin A, the toxin responsible for Atypical Myopathy (AM), according to Dutch research.

In Europe, the sycamore maple tree (Acer pseudoplatanus) appears to be the main culprit. But do other species of maple present a risk to horses?

The Faculty of Veterinary Medicine at Utrecht University and RIKILT Wageningen UR have studied equine mortality as a result of atypical myopathy. This serious muscular disease can occur after eating the leaves, seeds and/or buds of maple trees that contain the toxic substance hypoglycin A. The scientists studied hundreds of samples taken from a wide range of maple species to find out which species contained the toxin. They found that the sycamore maple contained the toxin, but the field maple (or hedge maple) and the Norway maple do not.

Each year, hundreds of horses in Europe die due to atypical myopathy, also known as ‘pasture myopathy’. In the past, horses with the condition were almost certain to die, but today the disease can be diagnosed and treated at a much earlier stage. However, the mortality rate for the disease is still 70%, so prevention is extremely important.

The researchers called on horse owners to send samples of the maple trees in their vicinity. They received 278 samples of the three most common types of maple trees in the Netherlands: the sycamore maple (Acer pseudoplatanus), the field maple or hedge maple (Acer campestre) and the Norway maple (Acer platanoides). They then measured the concentration of hypoglycin A in all of the seeds, leaves and buds. No levels of the toxin were found in field maples or Norway maples, but every sample of the sycamore maple contained hypoglycin A. It seems therefore that field maples and Norway maples near pastures and paddocks do not pose a danger to horses.

It would appear, however, that the mere presence of hypoglycin A in the leaves, seeds and buds of the sycamore maple does not necessarily mean the tree is by definition unsafe. There are, after all, thousands of pastures with sycamore maples in Europe in which the horses do not become ill. The level of the concentration of hypoglycin A also does not appear to correlate to whether or not horses nearby will become ill, so it seems as if there are other factors that play a role in the development of the disease.

The researchers recommend that horses with full access to a pasture surrounded by sycamore maple trees are given plentiful amounts of good quality roughage in their feed during autumn (placed on a dry spot on the ground), and are provided with places to take shelter. Owners may also fence off the edges of the pasture with electric fences to increase the distance to the trees and block access to the leaves and seeds. If necessary, they can also use a leaf blower to remove leaves and seeds from the pasture.

The researchers also recommend keeping the horses inside during storms until the branches, leaves and seeds blown from the trees can be removed. In order to ensure the horses’ welfare, it is of course better to invest time and effort into keeping pastures leaf-free than to keep the horses in their stalls for long periods of time.

For more details, see:
Worm egg count accuracy after storage

Monitoring the faecal worm egg production is crucial to developing targeted anthelmintic treatment programs.

Sometimes it may not be possible to carry out the worm egg count on fresh faeces and it may be necessary to store the sample before it can be examined. Does a delay in examining faeces samples affect the accuracy of the result? What effect does storage have on the precision of the worm egg count results?

Jennie A Crawley and others from the Department of Animal and Plant Sciences, University of Sheffield, investigated the effect of different storage methods on the worm egg count (FWEC) in horse faeces.

They assessed the effect on the worm egg count of storing the sample under various conditions – in fixative solutions (high and low concentrations of formalin or ethanol), or refrigeration (3-5°C).

The study concentrated on strongyle type eggs, and used a modification of the McMaster flotation technique which had a detection limit of 10 eggs per gram.

Worm egg counts were performed on fresh faeces. The samples were then refrigerated and retested daily for two weeks.

The research team found that refrigeration did not significantly affect the FWEC of samples in the first week. But after 8 days in the fridge, the FWEC of the sample dropped and was significantly lower than the fresh sample by ten days. After two weeks the FWEC had declined by an average of 44%.

To test the effect of fixative solutions on the FWEC, the researchers performed worm egg counts on fresh faeces and again after storage in high or low concentrations of ethanol or formalin. They found that after two weeks’ in fixative solutions the FWEC had dropped significantly. There was no further decline after 4 weeks.

They conclude that storage of faecal samples may preserve egg counts for a short period of time, though fresh analysis should always be conducted if possible. Refrigeration for maximum of a week will not significantly affect counts.

For more details, see:

Splitting the medial patellar ligament is an effective treatment for upward fixation of the patella according to a recent report by Andersen and Tnibar in the Equine Veterinary Journal (EVJ).

Upward fixation of the patella is a common condition of the stifle joint. It occurs when the medial patellar ligament hooks over the upper end of the medial trochlea of the femur (one of the two bony ridges on which the patella slides).

In the most severe cases the patella becomes fixed and the horse is unable to flex the leg. The horse stands with the affected hind leg extended behind it. Less severe cases show partial, intermittent upward fixation, which produces visible, and sometimes audible, clicking as the patella frees itself.

The condition is most common in younger horses and is often associated with poor muscle conditioning. Horses with straight hind limb conformation are more susceptible. Both hind legs may be affected to some extent.

In less serious cases, increased exercise, to improve muscle tone, may be all that is needed to overcome the problem. However, persistent cases may require surgical intervention.

For many years the recommended treatment was to cut the medial patellar ligament ("medial patellar desmotomy"). Although this is effective at preventing the patella becoming fixed, it is not without complications, such as fragmentation of the distal patella and articular cartilage damage. It has been suggested these adverse effects may be due to instability of the stifle following surgery, and increased tension in the remaining patella ligaments. To limit these complications, box rest for three months or more has been recommended.

Since 1999 Dr Aziz Tnibar has been treating upward fixation of the patella by splitting the medial patellar ligament.

He uses ultrasound guidance to direct the incision and ensure that the incision does not enter the stifle (femoropatellar) joint or damage the articular cartilage of the medial patellar ridge. He makes several incisions into the proximal (upper) third of the ligament. As the incisions heal the scar tissue results in thickening of the ligament. Initially he carried out the procedure under general anaesthesia, but more recently he has tended to do it with the horse sedated and local anaesthetic.

"The rationale for percutaneous splitting of the upper third of the medial patellar ligament is to induce a localised desmitis, which subsequently leads to a localised thickening of the ligament. This will make it more difficult for the upper part of the ligament to hook over the medial ridge of the femoral trochlea" says Dr Tnibar.

In the EVJ paper he describes the results of 85 cases he had treated using the technique over a 14-year period. All but 2 (97.6%) completely resolved either immediately after the surgery or within the 2-week convalescence period.

These were all cases that had failed to respond to conservative therapy, such as a conditioning exercise programme and corrective shoeing.

The authors conclude that medial patellar ligament splitting is "a highly effective and minimally invasive procedure to treat upward fixation of the patella when conservative therapy is unsuccessful. In addition, it allows for a very rapid return to sports activity."

They added that the effects of medial patellar ligament splitting appeared to be permanent, as no horse relapsed in the follow up period of up to 14 years.

For more details, see:

Medial patellar ligament splitting in horses with upward fixation of the patella: A long-term follow-up. C. Andersen and A. Tnibar
DOI: 10.1111/evj.12435
Non-invasive adrenal monitoring in horses

Adrenal activity in horses can be assessed by measuring corticosteroid metabolites in faeces.

Kelly Yarnell of the School of Animal Rural and Environmental Science, Nottingham Trent University, and Rebecca S. Purcell, Susan L. Walker of Chester Zoo, describe a method that offers a non-invasive option to assess long term patterns in both domestic and free ranging horses.

The authors point out that assessing adrenal activity by measuring faecal corticosterone has advantages over other methods. It avoids any possible stress associated with collecting blood or saliva for testing. They add that it also has the clear advantage of being non-invasive when studying free-range horses.

Sixteen horses (8 mares and 8 geldings) were divided into 4 experimental groups according to gender.

The groups were rotated around 4 different management systems designed to produce different degrees of stress in the horses – ranging from group housing to individual housing with no contact with other horses, as follows:

1) horses lived in a herd environment, closely simulating their natural habitat.
2) horses lived in pairs in an indoor barn
3) horses were housed alone in stables but were able to see other horses
4) horses were housed alone in stables and were not able to see other horses

Horses were maintained in under each regime for 5 days. They then had two days’ turnout before moving onto the next housing regime. The order of housing regime was chosen at random.

Faecal samples were collected from horses on 3 consecutive days under each management regime. Samples were collected at least 20 hours after horses entered the housing.

The results of the enzyme linked immunoassay (EIA) revealed no significant difference in corticosterone levels between male horses and female horses. The level of faecal corticosterone increased as the degree of isolation increased. Isolated horses had significantly higher levels of faecal corticosterone compared to all other housing designs. The lowest concentration of faecal corticosterone for all days was found in the group housed treatment.

The authors conclude: “Fecal assessment offers advantages over other techniques that monitor adrenal activity including blood plasma and saliva analysis. The non-invasive nature of the method avoids sampling stress which can confound results. It also allows the opportunity for repeated sampling over time and is ideal for studies in free ranging horses.”

For more details, see:

Yarnell, K., Purcell, R. S., Walker, S. L.
dx.doi.org/10.3791/53479

See also:
First Equine PET Scanner

The UC Davis veterinary hospital recently acquired a positron emission tomography (PET) scanner. This makes it the first veterinary facility in the world to utilize the imaging technology for equine patients. In association with the UC Davis School of Veterinary Medicine’s Center for Equine Health (CEH), the hospital will launch use of the PET scanner in the summer of 2016. The unit has been acquired for research and clinical studies on lameness diagnosis in horses.

PET differs from other imaging modalities as it is a “functional” technique, showing activity at the molecular level. It can detect alterations in the tissue before any changes in size or shape are seen with other techniques. Once morphological changes have occurred, PET can tell whether the changes are still active or not.”

“In practicality, that means two things,” said Dr. Mathieu Spriet, a UC Davis veterinary radiologist. “One, PET can detect lesions that other advanced modalities do not identify, and two, it can tell us if a lesion—identified with another modality—is a significant injury or not.”

The equine PET scanner has produced initial data—obtained last year at UC Davis during a research project using a prototype of the new scanner—that demonstrates great success for bone imaging. The project revealed several PET capabilities for equine imaging:

- identified small areas of bone remodeling at the attachment of tendons or ligaments missed with other modalities
- showed increased activity in bone adjacent to joints, where degenerative changes are known to occur, before morphological changes were present
- revealed increased activity in some joint fragments whereas other joint fragments appeared quiet
- demonstrated that some areas of bone proliferation were active, whereas others were quiescent.

Combined PET and CT images of the foot of a 20-year-old Thoroughbred. The PET demonstrates an active lesion of the navicular bone (white arrows) as well as abnormal uptake in the bone adjacent to the pastern joint (black arrow). This second lesion was not seen on the CT, but suggests early degenerative changes that could lead to the development of a bone cyst. Image: UC Davis
“Preliminary data suggests that PET will be the next big revolution in equine imaging since the development of MRI,” said Spriet.

In order to confirm these findings and further define the role of PET in lameness imaging, UC Davis will launch a clinical trial in the fall of 2016. Horses likely to benefit from enrollment in the trial are:

- horses for which other advanced imaging modalities (MRI, CT or nuclear scintigraphy) have failed to identify the cause of the lameness
- horses for which the results of other imaging modalities are confusing due to the presence of multiple abnormalities or equivocal findings.

PET has also shown great promises in evaluating soft tissue lesions, in particular regarding laminitis and tendon lesions. Research studies gathering further information in these specific areas will commence shortly at UC Davis. As more data becomes available, additional clinical trials will likely develop.

Support for research projects and clinical trials involving PET, as well as the acquisition of the scanner, was provided by the Grayson-Jockey Club Research Foundation and private donations through CEH.

“We’re grateful that our donors can see the vision of what these new technologies can bring to equine health,” said Dr. Claudia Sonder, director of CEH. “We look forward to this PET research translating to cutting-edge clinical applications at the UC Davis veterinary hospital.”

For more details see: http://www.vetmed.ucdavis.edu/vmth/diagnostic_imaging/la_imaging/PET.cfm

War of the worms

Parasitologists at the Moredun Institute near Edinburgh, have teamed up with animator Selina Wagner (Blobina Animations) to produce a short film to highlight important factors involved in the development and spread of anthelmintic resistance. It was unveiled at the Royal Highland Show. See what you think...

https://www.youtube.com/watch?v=nV7ItbKCKhE

Vets with Horsepower ride again

The Vets with Horsepower team are on the road again this August. This time the motorbiking vets are travelling 2500km through South Africa over 12 days.

The nine senior academic and practicing specialist vets will undertake an endurance motorbike trip from Johannesburg to Cape Town.

Along the way they will provide one-day education events for horse owners and equine veterinarians, to raise funds for three South African charities: Ethelbert Children’s Home, The Highveld Horsecare Unit and The Bizana Project.

This will be the 6th year of Vets with Horsepower, so far the team has raised over £400,000.

https://www.facebook.com/VwHPCPD/
Genetic susceptibility to sarcoids

Sarcoids are the most common form of skin cancer in horses. There is increasing evidence that the bovine papilloma virus (BPV) is responsible, but little is known about some horses are affected and not others.

A new study by an international research group led by scientists at the Baker Institute for Animal Health at Cornell’s College of Veterinary Medicine shows that genetic differences in immune function between horses partly account for these differences. The study, published in the International Journal of Cancer, mirrors findings in humans, as some people have a genetic susceptibility to human papillomavirus, which can cause cervical and other cancers.

"Many therapies have been proposed as the 'best' treatment for sarcoids," says Dr. Doug Antczak, the Dorothy Havemeyer McConville Professor of Equine Medicine, who led the study.

He explains that recent work from Europe suggests variants of the BPV have become adapted to horses and are probably the cause of most sarcoids.

With a grant from the Morris Animal Foundation, Antczak, his collaborators Samantha Brooks and Ann Staiger from the University of Florida, and the rest of the team applied a genome-wide association study to compare the genetic makeup of horses with and without sarcoid tumors at more than 50,000 sites in the equine genome. They studied 82 sarcoid-bearing horses from the U.S. and United Kingdom and 272 carefully matched controls that did not have sarcoids. They found regions on chromosomes 20 and 22 that tended to be different in horses diagnosed with sarcoids, evidence that a horse's genes determine, in part, how susceptible it is to sarcoids.

"This is an example of more complicated genetics -- multigene susceptibility," says Antczak. "More than one genetic region is associated with susceptibility to sarcoids, and they don't completely determine whether or not a horse will develop the disease once it's exposed to BPV."

This genetic link implicates the immune system in sarcoid susceptibility. The region of chromosome 20 associated with sarcoid development is within a portion of the genome responsible for immune function called the Major Histocompatibility Complex (MHC) class II region. The MHC type associated with sarcoid susceptibility is very rare among Standardbred horses, a fact that may explain why sarcoid is diagnosed so rarely in this breed.

"That should make a light bulb go off," Antczak says. "It suggests there's a common mechanism in both species for susceptibility to tumor progression that may involve subversion of the host immune response. By studying this phenomenon in horses you can learn about human cancer and vice versa."

For more details see:

Host genetic influence on papillomavirus-induced tumors in the horse
Elizabeth A. Staiger, Chia T. Tseng, Donald Miller, Jennifer M. Cassano, Lubna Nasir, Dorian Garrick, Samantha A. Brooks and Douglas F. Antczak.
International Journal of Cancer (2016) 139, 784 -792.
DOI: 10.1002/ijc.30120
New Test for Encysted Cyathostomes

Scientists at the Moredun Institute near Edinburgh have been developing a new diagnostic blood test to assess encysted small strongyle larval burdens in horses.

Cyathostomes (also known as small strongyles or small redworms) are the most important internal parasite of horses. They spend a significant part of their life cycle as inhibited larvae within the mucosal wall of the intestine. Mass emergence of the larvae causes acute colitis and diarrhoea. Cyathostomes may be associated with colic, and are known to cause chronic weight loss and malaise.

There are currently no direct methods of detecting these immature states, preventing specific diagnosis and targeted treatment of the infection.

The new test detects antibodies to larval cyathostomins encysted in the gut wall of infected horses. In a further development, Moredun scientists are now collaborating with Austin Davis Biologics (who provide EquiSal Tapeworm testing) to develop the test for use with saliva samples. If successful, this would simplify the sample collection process for horse owners, enabling them to take samples directly from their horses for analysis.

For the early stages of this project, the researchers are working with equine veterinary practices to collect matched samples of blood and saliva and, after initial development, saliva test results will be compared with the previously validated blood test.

Group Leader, Professor Jacqui Matthews, who is developing the diagnostic blood test at Moredun commented: “We are delighted to collaborate with Austin Davis Biologics to further develop this test; the company has significant experience in the development of saliva-based tests for the equine market.”

Dr Corrine Austin, of Austin Davis Biologics said: “We are very pleased to be working with Moredun on this exciting new project. A saliva test for encysted cyathostomins will provide horse owners, equine veterinarians and animal medicines advisors with a new tool to target the treatment of cyathostomin infections in horses.”

Spontaneous regression of sarcoids

Sarcoids rarely go away without treatment, and often return if removed surgically. However, a recent report describes a surprisingly high rate of spontaneous regression of equine sarcoids in young Franches-Montagnes horses with milder forms of the disease.

The study, by Berruex and colleagues in Switzerland, followed a cohort of 61 three-year-old sarcoid-affected horses over a period of 5 – 7 years. All were Franches-Montagnes (also known as Freiberger), a breed native to the Jura region of Switzerland. A control group of sarcoid-free horses, matched for age, breed and location, were included in the study.

Of the 61 horses that had sarcoids as 3 year-olds, 38 had become sarcoid-free by the time of the follow up examination. In 29 of those horses, the sarcoids had spontaneously disappeared without treatment.

Occult sarcoids underwent complete spontaneous regression in 65% (11/17), while 32% (9/28) of verrucous lesions regressed spontaneously.

The authors conclude: “These findings justify a "wait-and-see" approach in selected cases of occult and verrucous equine sarcoid, provided that all lesions are closely monitored. Furthermore, results of this study should also be considered when critically assessing treatment effects of therapies directed against equine sarcoid, especially in the context of uncontrolled studies.”

For more details see:
DOI:10.1080/01652176.2016.1204483